描述
报名须知
1、 适合人群:12年级及以下年级学生。
2、 滚动开班,欢迎一起组班
3、 Euclid培训班为3-8人小班,满3人开班。
4、线上线下均可,面授地点为上海市长宁区镇宁路525号新东纺3楼
Euclid比赛规则
1. 比赛时长共2.5个小时,150分钟
2. Euclid共有10道题,无选择题,均为简答题,每题都有2-3小题
3. 一些题目只需写出最后的答案,一些题目需要写出计算过程,一些题目需要写出完整证明过程。评分标准不光是以最终结果正确与否给分,也会根据答题步骤及思路和技巧来给分。如果答题步骤或方式过为散乱,即使最终结果是正确的也不会给予满分。
4. 可使用计算器,且大部分计算器均可使用,但还有以下功能的除外
(网络功能,与其他设备沟通功能,存储功能,电脑代数系统,动态几何软件)
Euclid备赛
University of Waterloo滑铁卢大学官方建议为:
1. Grade 12 open courseware:
这是一个Center for Education in Mathematics and Computing(CEMC)开设的网课,有数学和计算机的课程。滑铁卢大学推荐参赛者上Advanced Functions and Pre-Calculus(高端方程与预备微积分)和Calculus and Vectors(微积分与向量)两门课程
2. Mathematics Resource Manual for High School Students and Undergraduate Studies:
这本书盘点了高中数学的主要内容,不仅能成为准备竞赛的利器,也能帮助同学们由高中更好地进入大学数学的学习
3. Euclid eWorkshop:
这是CEMC为Euclid打造的准备材料,类似于一个带有例题的概念表,盘点了参加Euclid Contest所需要的知识点
4. 往届比赛题目:
往届比赛题目是很珍贵的准备竞赛的资源,做这些题目不仅能帮助参赛者复习知识点,也能让他们更加熟悉Euclid的出题方式和套路,更好地应对比赛
课程大纲
Main Topics | Selected Essential Details (Materials with * are aimed for the potential last Problems) | |
Number Theory | Prime factorization | Number of factors, Sum/Product of factors |
LCM and GCD, *Euclidean Algorithm and Bézout's Theorem | ||
Congruence and Modular Algebra | Principles of Modular Calculations | |
*Euler’s Theorem/Fermat's Little Theorem | ||
*Chinese Remainder Theorem(CRT) | ||
Digits and Base-n Representation | Mutual Conversion between different bases | |
Diphantine Equations | Estimation and Molular Method | |
Algebra | Sequences | Arithemetic and Geometric Sequences |
Periodic Sequences, *Recursive Sequences and Characteristic Equation Method | ||
*Conjecture and Mathematical Induction Proof | ||
Functions and Equations | Elementary Functions (Linear, Quadratic, Exponential, Logarithmic, Trigonometric) and their properties | |
Functional Equations | ||
*Gaussian/Floor function | ||
Inequalities and Extreme Value Problems | Simple Polynomial Inequalities | |
AM-GM Inequality, *Cauchy inequality | ||
Polynomials | Division Algorithm of Polynomials and the Remainder's Theorem | |
Fundamental Theorem of Algebra (Polynomial Factorization) and Vieta's Theorem | ||
The Rational Root Theorem | ||
Geometry | Triangles and Polygons | The Law of Sines, The Law of Cosines |
Area Method and Heron's formula | ||
*Menelaus's theorem, Ceva's theorem, Stewart Theorem | ||
Centers of triangle | ||
Circles | Chords, Arcs, Tangents, Inscribed and Central accepted angles | |
Cyclic Quadrilateral | ||
Power of a Point Theorem, *Ptolemy's theorem | ||
Basic Coordinate Geometry | Coordinate System and Equations of lines, Circles | |
Basic Solid Geometry | Lines in space, Planes; Rectangular Box, Pyramids, Prisms, Sphere and Cones,Frustums | |
Combinatorics | Basic Counting Principle | Sum Rules and Product Rules |
Permutations and Combinations | Combinatorics numbers and *Combinatorics identities | |
Grouping Theorems, Boards Method and the Problem of Balls into Boxes | ||
Logic reasoning | *Pigeonhole principle | |
部分导师
苟老师
北京师范大学材料物理本科,布里斯托大学应用数学硕博,高考数学148分,国内数学物理竞赛背景,曾负责国内一线机构AMC项目研发和教师培训,曾担任国内知名高中国际部数学老师/竞赛教练。20年amc北美考团11人,10晋级aime,其中一人amc12分数为133.5,晋级前1%,2021年AIME学生最高分13分,曾负责国内一线机构AMC项目研发和教师培训,担任国内知名高中国际部数学老师/竞赛教练。
王老师
毕业于北京大学,拥有多年海外工作经验,有丰富的数学竞赛背景。曾获得新加坡数学竞赛一等奖,华罗庚金杯少年数学邀请赛全市第一,全国初中数学竞赛一等奖,上海市高中数学竞赛一等奖(满分全市第一),全国高中数学竞赛一等奖。自小学开始保送至上海华育中学,上海中学高中部,北京大学。
学员成绩
2019Euclid欧几里得数学竞赛, 75-80分部分2人,分布于武外英中等学校, 84-87分部分5人,分布于武外英中,Bedstone college等学校,上海大同中学等
2021年共计 33 位学生获得DISTINCTION
其中南京外国语一同学获得94的高分
Oversea international school的一同学获得93分
西安铁一中一同学获得93分
深圳国际交流学院一同学获得90分
共计4人达到90+、12人达到 80+